LaTeX Kurs – Teil 3 (Hausaufgabe)

Mathematische Formeln und Notationen

Bearbeitungszeit: ca. 2–3 Stunden Ziel: Vertiefung des Umgangs mit mathematischen Umgebungen, Gleichungsnummern und Operatoren.

Aufgabe 1 – Inline- und Display-Formeln

- 1. Schreiben Sie einen erklärenden Absatz über eine bekannte mathematische Beziehung (z. B. Satz des Pythagoras).
- 2. Binden Sie Formeln sowohl inline (\$...\$) als auch abgesetzt $(\[...\])$ ein.

Aufgabe 2 – Nummerierte Gleichungen

- Verwenden Sie die Umgebung equation für zwei nummerierte Formeln.
- Ergänzen Sie Indizes und Exponenten (x_{i}, x^{2}) .

Aufgabe 3 – Klammern, Brüche und Wurzeln

- 1. Nutzen Sie \frac und \sqrt in unterschiedlichen Varianten.
- 2. Vergleichen Sie \left(... \right) mit festen Klammern (\bigl(... \bigr)).

Beispiel:

```
\[ \left( \frac{a+b}{2} \right)^{2} = \frac{a^{2} + 2ab + b^{2}}{4} \]
```

Aufgabe 4 – Summen, Produkte und Integrale

- Erstellen Sie eine Summenformel (\sum), ein Produkt (\prod) und ein Integral (\int).
- Verwenden Sie \limits, um Grenzen darzustellen.

Aufgabe 5 – Array / Matrix

- Erstellen Sie eine kleine 3×3-Matrix mit \begin{array}{ccc}.
- Verwenden Sie verschiedene Schriftarten (\mathrm, \mathsf, \mathbf).

Beispiel:

```
\[
\mathbf{A} =
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
\]
```

Aufgabe 6 – Griechische Buchstaben und Pfeile

- Schreiben Sie eine Gleichung mit α , β , γ .
- Verwenden Sie Pfeile (\to, \Rightarrow, \longmapsto).

Reflexionsfragen

- Wann verwendet man Inline- vs. Display-Mathematik?
- Wozu dienen \left und \right?
- Wie werden Gleichungen nummeriert und referenziert?